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Reed-Solomon (RS) codes have been part of standard NASA telecommunications

systems for many years. RS codes are character-oriented error-correcting codes, and

their principal use in space applications has been as outer codes in concatenated

coding systems [6, Section 5.4.4]. However, for a given character size, say m bits,

RS codes are limited to a length of, at most, 2m. It is known in theory that

longer character-oriented codes would be superior to RS codes in concatenation

applications, but until recently no practical class of "long" character-oriented codes

had been discovered. In 1992, however, Solomon [4,5], discovered an extensive class
of such codes, which are now called trace-shortened Reed-Solomon (TSRS) codes.

In this article, we will continue the study of TSRS codes. Our main result is a

formula for the dimension of any TSRS code, as a function of its error-correcting

power. Using this formula, we will give several examples of TSRS codes, some
of which look very promising as candidate outer codes in high-performance coded

telecommunications systems.

I. Construction Summary

In this section, we will summarize the construction of

trace-shortened Reed-Solomon (TSRS) codes, and state

our main result (Theorem 1), which is a formula for the

binary dimension of an arbitrary TSRS code. In Section II,

we will give some numerical examples. In Section III, we
will state and prove a theorem (Theorem 2) that is more

general than Theorem 1. Finally, in Section IV, we will

summarize our results and list several open problems.

1 Independent consultant to the Cormnunications Systems Research
Section.

We begin with a summary of TSRS codes, as intro-

duced in [4,5]. For any length n of the form n = 2 TM - 1,
any desired minimum distance d < n- 1, and any posi-

tive integer # <_ m, there is a TSRS code of length n and

minimum distance d over the symbol alphabet V(2m-_),

the space of binary (m - #)-tuples. TSRS codes are con-

structed using properties of the Galois field GF(2m). The

field GF(2 m-z) does not come into play in the construc-
tion, and so TSRS codes are not linear over the symbol

field GF(2m-_'). However, they are linear over GF(2),
and the symbol-wise cyclic shift of any codeword is also

a codeword. Our main result (Theorem 2) is a formula

which allows the easy calculation of the binary dimension
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of any TSRS code. We give several numerical examples,
which show that TSRS codes are in some cases "almost

maximum distance separable (MDS)," even though they

are much longer than any true MDS code can be.

We begin with an ordinary Reed-Solomon (RS) code,

as originally defined [3]. That is, with m and k0 fixed, we

consider the set Pkm° of polynomials of degree k0 - 1 or less

over the field GF(2m), and for each polynomial P E p_0,

we define a length n = 2m - 1 codeword C(P) as follows:

C(P) = (P(1),P(c O, ..., P(o_n-1)) (1)

where a is a primitive nth root of unity in GF(2m). The

set of all such codewords, i.e., {C(P) : P E T'_°}, is an

(n, ko,d) RS code over GF(2"_), where n = 2'n - 1 and

d=n-ko+l.

The words in the above-constructed RS codes are vec-

tors of length n over the field GF(2m). The next step
in our construction is to "expand" each codeword into a

length nrn binary vector by representing each codeword

symbol as a vector of length m over GF(2). The par-

ticular coordinate basis we shall use for this represen-
tation is the basis which is dual to the "natural" basis

{ 1, a .... , _,_-1}. With respect to this dual basis, which

we denote by {/30, fll .... , tim-l}, an element z E GF(2 m)
has representation x = xot3o +... + xm-lflm-1, where the

components xh, which are elements of GF(2), are given by
the fornmla

xh = Tr_(xa h) for h = 0, 1, ..., m- 1 (2)

In Eq. (2), and throughout the article, we use the symbol
"Tr" to denote the trace operator. The super- and sub-

scripts denote the subfields involved. Thus Tr_(_), the

trace of_ from GF(2 m) to GF(21), represents the GF(2)-

linear mapping from GF(2 m) to GF(21), given by

basis representation, which are summarized in [2, Chap-

ter 8].

In any event, we call this "expanded" code the bit-

mapped version of the RS code.

Now we can define the trace-shortened Reed-Solomon

codes. Given the bit-mapped RS code defined above, for

any integer # in the range 0 < # < m, we define the TSRS

code of index p to be the set of bit-mapped RS codewords

for which the first p binary components of each codeword

symbol are zero. That is, if C = (Co, ..., Cn-1) is a

codeword in the original RS code, C is in the corresponding

TSRS code of index # if and only if

for h=O, 1, ...,:-1Tr_(cthCi)=O fori=O, 1, ..., --1 (5)

If we delete the p guaranteed-zero binary components from

each bit-mapped RS symbol, the TSRS code defined by

Eq. (5) becomes a code of length n whose codeword com-

ponents lie in the vector space V(2 m-u) of binary (m-p)-

tuples. We note that while V(2 m-u) is not a field, it is

nevertheless a group, viz, the elementary abelian group of

order 2m-u [1, Section 3.3]. Since this code is, by def-

inition, a subcode of the parent RS code, its minimum

distance is at least d. The bitwise sum of any two code-

words satisfying Eq. (5) also satisfies Eq. (5), and so the

code is a group code over the elementary abelian group

V(2m-u). Also, any (symbolwise) cyclic shift of any code-
word in the TSRS code is also a codeword, so the code

is a cyclic group code. The determination of the binary
dimension of the code is somewhat challenging, and is the

main result of this article. In the next paragraph, we will
discuss our formula for this dimension.

(3)

Similarly, if d is a divisor of m, Try'(() denotes the trace of

from GF(2 a) to GF(2m), defined as the GF(2d)-linear
mapping from GF(2 m) to GF(2d), given by

Tr_(_) = _ + _2' + _2_' +... +_2( s-')_ (4)

where f = m/d. Throughout the article, we will freely

use the basic properties of the trace operator and the dual

As we have seen, the TSRS code of index p over

GF(2 m) is a subgroup of the group V(2m-") n. The order
of the code, i.e., the number of codewords, need not be a

power of 2m-z, but since the code is linear over GF(2),
it must be a power of 2, say 2K* . The following theorem

gives a simple way to calculate K,. Before stating it, how-
ever, we need to introduce so-called cyclotomic cosets of

the field GF(2m), which are the cycles of the permuta-

tion i ---*2i mod (2 m - 1) on the set {0, 1,..., 2m - 2} [2,

Chapter 7]. We shall denote the size of the jth cyclotomic

coset by dj. For example, if m = 4, there are five such
cyclotomic cosets:
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j Cj dj

0 (0) 1
1 (1,2,4, 8) 4
3 (3,6,12,9) 4
5 (5,10) 2
7 (7,14,13,11) 4

Theorem 1. Denote by ej the number of integers in

the set {0, 1, ..., k0 - 1} which lie in the jth cyclotomic

coset of GF(2"_). Then the binary dimension of the index

# trace-shortened (n, k0) RS code is given by the formula

Ku = E max (mej - ttdj, 0) (6)
J

K0=4+16+8+4+4=36

K1=3+12+4+2+0=21

K2=2+ 8+0+0+0=10

K3=l+ 4+0+0+0= 5

In other words, by "trace-shortening" the parent (15, 9, 7)

RS code, we obtain the codes over V(8), V(4), and V(2),

as shown in the table below. (In the following table, we

extend the usual (n, k, d) notation for linear codes to the

nonlinear TSRS codes by letting k denote the "pseudodi-

mension" of the code, defined as k_ = [(,/(m - #).)

In Section II, we will give two extended numerical ex-

amples of TSRS codes. In Section III, we will give our

proof of Theorem 1. Finally in Section IV, we will make

some concluding remarks, and list several open problems
about TSRS codes.

II. Examples

For our first example, we begin with the (15, 9, 7) RS

code over the field GF(16). Here m = 4, n = 15, k0 = 9.

In the table below, we list the cyelotomic cosets of GF(16),

together with the numbers dj and ej, which are needed to

apply Theorem 1. (For clarity, we list the numbers in the

set {0, 1, ..., 8} in boldface.)

j Cj dj ej

0 (0) 1 1
1 (1, 2,4,8) 4 4
3 (3, 6, 12,9) 4 2
5 (5,10) 2 1
7 (7, 14,13,11) 4 1

From this table and using Eq. (6), the binary dimension

K_ is given by the formula

/_'tt : (4 - p)+ + (16 - 4p)+ + (8-4p)+

+ (4 - 2p)+ + (4 - 4p)+

Code parameters Symbol group

(15,9,7) V(16)
(15,7,7) V(8)
(15,5,7) V(4)
(15,5,7) V(2)

Since the Singleton bound implies that any code with n =

15 and d = 7 must have k _< 9, it follows that the (15, 7, 7)

code over V(8) is close to optimal. The (15,5,7) code

over V(4) is not as good as the (15, 6, 7) generalized Bose-
Chaudhari-Hocquenghem (BCH) code, but we could have

obtained a code with the same parameters by starting with

an alternate RS code. Finally, the (15, 5, 7) code over V(2)

has the same parameters as the (15, 5,7) BCH code.

As our second example, we start with the (31, 27, 5) RS

code over GF(32). The distribution of the numbers in the

set {0, 1, ..., 26) is shown in the following table:

j Cj dj ej

0 (0) 1 1

1 (1,2,4,8,16) 5 5

3 (3, 6, 12, 24, 17) 5 5

5 (5, 10, 20, 9, 18) 5 5

7 (7, 14, 28, 25, 19) 5 4

11 (11,22,13,26,21) 5 5

15 (15, 30, 29, 27, 23) 5 2

where x+ is short for max(x, 0). Thus we have Thus we have from Theorem 1,
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Ko=5+25+25+25+20+25+10=135

K1=4+20+20+20+15+20+ 5= 104

K_ =3+ 15+ 15+15+10+ 15+ 0=73

K3=2+I0+I0+I0+ 5+10+ 0=47

K4=l+ 5+ 5+ 5+ 0+ 5+ 0=21

This leads to the following list of codes:

Code parameters Symbol group

(31,27,5) V(32)

(31,26,5) V(16)
(31, 24.33, 5) V(8)

(31,23.5, 5) V(4)
(31,21,5) V(2)

This list contains some interesting codes. In particular,

the (31,26,5) code over V(16) is optimal, and in fact is

"nearly" MDS, despite the fact that it is twice as long as

any MDS code over a 16-symbol alphabet.

Let us conclude this section with a few bigger exam-

ples, omitting the detailed computations. Beginning with

a (511,478, 34) RS code over GF(29), for which the parity-

check polynomial is h(x) = 1-147s _1 _ c_ix), and trace-
llj=lk _

shortening it with p = 1, one obtains a (511,474,34)

TSRS code over the symbol group v(2S). Similarly, be-

ginning with a (511,470,42) RS code over GF(29), with

h(x) = 1"[47° tl - mix), again taking p = 1, one obtains a
llj:lk _

(511,465,42) code over V(2s). Preliminary calculations

performed by Dr. Fabrizio Pollara of the Communica-

tions Systems Research Section indicate that when con-

catenated with the NASA standard (7, 1/2) convolutional

code, both of these TSRS codes give an overall perfor-

mance which is superior to that of the standard (255,223)
RS code.

III. Proof of Theorem 1

In this section we will state and prove a theorem which

is slightly more general than Theorem 1.

We begin with the field F = GF(2m), a positive integer
n which is a divisor of 2 rn - 1, and a primitive nth root of

unity in F, say a. Let J be a subset of {0, 1, ..., n- 1},

with [J] = k0. We then define the code Cj to be the

(n, k0) cyclic code over F, with check polynomial h(x) =

l-Ijej(1 - aJx). Equivalently, C.I consists of all vectors
C = (C0, C1, ..., Cn-1) of the form

= "--"2.,cJc_ij i = O,1, ..., n -C, 1 (7)
jEJ

where (cj), for j E J, is an arbitrary set of elements of
F, indexed by J. For future reference, we denote the

minimum distance of the code Ca by dj. Note that if

the elements of J form an arithmetic progression mod-

ulo n, whose increment is relatively prime to n, then

da = n - k0 + 1 by the BCH argument, and the code

Ca is a (generalized) Reed-Solomon code. For example, if

n = 2m - 1 and J = {0, 1, ..., k0- 1}, the code C.1 is the

same as the RS code defined in Eq. (1).

We now define the yth-order trace-shortening of Cj, de-

noted by Cau, to be the set of codewords C C Cj such that

h=0,1, ..., tt-1Tr_(e_hCi) = 0 i = 0, 1, ..., n- 1 (8)

In words, C_ consists of all codewords of Ca for which

the first # binary components (with respect to the ba-

sis for GF(2 m) over GF(2), which is dual to the basis

{1,c_, ..., am-l}) of each codeword symbol are zero. If
we ignore these pn guaranteed-zero components, the code

C._ becomes a code of length n over the set V(2 "_-u) of

binary (m - #)-tuples.

We denote the minimum symbol distance of the code

C_ by d_. Since every codeword in Cu is also a codeword

in the parent code Cj, the minimum symbol distance of
C_ cannot be less than that of Ca, i.e., d_ _ dj. This
simple bound is all we will have to say about the distance

properties of the code C_. Our main results concern the
size of the code.

Because the parent code Ca is a linear, cyclic code over

GF(2m), it follows that the code C_ is closed under the
operations of addition of any two codewords, and takes

the (symbolwise) cyclic shift of any individual codeword.

However, since the field GF(2 m-u) does not come into

play, C_ cannot be a linear code. Nevertheless, we will

define a pseudodimension for Q_.

Since, as observed, the sum of any two codewords from

C_ is another codeword, C_ is a linear code over GF(2).

Let us denote its GF(2)-dimension by Ku. (Thus K0 --
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k0 x m, Km = 0.) Then the pseudodimension of Cff is
defined as

Theorem 2. The binary dimension A', of the code C_

is g_ven by the formula

1
k. - /G (9)

rn--/2

K. = - ,dj)+ (10)
jEI

Thus if ]C_I denotes the number of codewords in C_, we
have that

IcJI = 2(m-_)k"

The main result of this article (Theorem 2, below),

is the determination of Ku, and hence also kF,, for # =
0,1, ..., m. To state the result, we need to define the

modulo n cyelotomic cosets.

Let n be an odd positive integer. If i and j are integers

in the range 0 < i < n- 1, and if2si= j (modn) for

some integer s, we say that i and j are conjugate mod-
ulo n. It is easy to see that conjugation modulo n is an

equivalence relation on the set {0, 1, ..., n - 1}, and so

the set {0, 1, ..., n - 1} is partitioned into a number of
disjoint equivalence classes, which are called the modulo

n cyclotomic cosets. Alternatively, the cyclotomic coset

containing j, which we will denote by I'j, can be described

explicitly as the set {j, 2j, ..., 2d-l j}, where d is the least

positive integer such that 2dj - j (mod n). The integer

d is called the degree of j, written d = deg(j). In what

follows, we will denote the cardinality of Fj by dj. It is

easy to see that every element of Fj has degree dj, and

that dj is a divisor of n. Finally, we denote by In the set
consisting of the smallest integers in each cyclotomic coset.

Example 1. Let n = 15. A short calculation shows
that there are five cyclotomic cosets modulo 15; indeed,

we have I15 = {0, 1,3, 5, 7}, and

F0 = (0) do= 1
F1 = (1,2,4,8) dl = 4

Fa = (3,6,12,9) d3 = 4

Fa = (5,10) ds = 2

FT= (7,14,13,11) d7=4

Thus deg(0) = 1, deg(1) = deg(2) = deg(4) = deg(8) = 4,
etc.

Now we can give our formula for the binary dimensions

of the codesC_. For each j E In, we define Jj = JClFj,

and ej = ]Jj[. (Compare to Theorem 1.)

where (x)+ = max (x,0).

To prove Theorem 2, we need several Lemmas. If n is a

divisor of 2"* - 1, let P(x) be a polynomial of degree n - 1
in the indeterminate x, with coefficients in F = GF(2m):

n-1

P(x) = E PJ xj' PJ • F (11)
j=0

Now define the polynomial P(x) as follows:

7)(x) = Tr?(P(x)) mod (x n - 1)

n-1

=__Pjx j (12)
j=0

where in Eq. (12) it is understood that TrT(_ ) = _ + _2

+ ... + _2_-_, as in Eq. (3).

Example 2. Let m = 4, n = 5. IfP(x) = Po+PlX

+ P2x 2+ P3x 3 + P4x 4, then P(x) = P(x) + P(x) _ + P(x) 4

+ P(x) smod(x 5- 1) = 1 x (P0 + Po + p4 +ps) +x

x (P,+P2a+P4+P¢)+x2 x (P2+P2+P34+P2)+x 3

× e: + + × p?+ + Thus,

v0 = P0+P: + + eg

= + P?+ P2+ P2

P3 = Pa + P{ + P_ + P_

P4= P4+ P{ + P14 + P3s

Lemma 1. Let P(x) be a polynomial of degree
n- 1, as defined in Eq. (11). Then Tr'l"(P(x)) = 0 for

all x • {1,a,a 2, ..., c__-1} if and only if'Pj = 0 for

j=0,1, ..., n-1.
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Proof." Since x n = 1 for all x E {1,_r, ..., c_'-l},

it follows from Eq. (12) that Tr'_(P(x)) = 0 for all x E

{1,c% ..., _,_-1} iffP(x) -- 0 for all x E {1,a, ..., a=-1}.
But deg'P(x) < n - 1, so that T'(x) must be identically
0. O

The next lemma gives an explicit formula for the coef-

ficients :Pj of P(x).

Lemma 2. For j E {0,1, ..., n- 1}, if d-- deg(j),
then

(13)

Note: For a fixed j, for each g E Fj, there exists a unique
integer i in the set {0, 1, ..., d-l} such that 2ig mod n =

j. The summation in Eq. (13) is to be understood to be

over all pairs (g,i) such that g • Fj, i • {0, 1, ..., d- 1},
and 2ig rood n = j. We will observe this same convention

in summations like that in Eq. (13) in the remainder of
the article.

Example 3. With n = 15 and j = 10, we have from

Example 1 F10 = {5, 10}, and so Lemma 2 implies that

VlO ---- Tr4(p? + PlO) = (P: + Rio) "Jr- (P5 2 nt- P,0) 4 = P_

+ Plo + p4 + P_0" 0

Proof of Lemma 2: By definition (Eq. (12)),

= Tr 1(Trd (_)) (15)

[2, Theorem 8.2]. Combining Eqs. (14) and (15), we find

that the coefficient of x j in _(x) is in fact the coefficient
of xJ in

(16)

Now since each element of Fj has degree d, it follows that

Tr"_(Pgxg) = xg 'l't'_(Pg) mod x" - 1 for each g • Pj, so
that Expression (16) becomes

Trf E xg Tr_(Pg) (17)
gEFj

Recalling that Tr7(_) _ + _2 + + _2_-'= ... , we see that if

i is the unique index in the range 0 < i < d- 1 such that

2ig = j, the gth term in the sum in Eq. (17) contributes

exactly

1)(x) = rl_(P(x)) mod x n - 1

n-1

= _ Tr?(Pgx g) rood x n - 1
g--0

Since the exponents appearing in the expansion of

Tr_(Pgxg) are exactly those which are modulo n conju-

gates of g, it follows that, in calculating the coefficient of

xJ in _O(x), only those indices g which are conjugates of

j, i.e, elements of Fj, need be considered. In other words,

the coefficient of xJ in T'(x) equals the coefficient of xJ in

(14)

Now we need to invoke the fact that, if d is a divisor of

m, then

124

m 2' m 2 i
'1¥d(Pg) =Tr d(P; )

to the coefficient of X j . But this is exactly what Eq. (13)

•says. [_

Corollary. If Jl and j_ are conjugate modulo n, then

T'j_ and _'j_ are conjugates in GF(2"_). More precisely, if
j has degree d, and if s • {0, 1, ..., d- 1}, then

"P2"jmodn = _Dj2"

Proofi If we use Lemma 2 to compute p2", we find



21gmodn=j

_ p 2'+'-Tr5n -g
_Er i

21gmodn=l

2'

=Tr Z C
gEFj

2k gmodn=2s3

= P2,j 0

Example 4. For m=4 and n =5, we have from the

Corollary, with j = 1 and s = 0, 1, 2, 3, that

P20mod5 : "I)1 = _O1

"P2amod5 = "P2 = "_

"_2_mod5 : '_4 = '_i 4

"P2arood5 : _D3= _D8

These relationships can be verified directly by referring to

Example 2. 0

Now. we are prepared to begin the proof of Theorem 2.

In effect, we wish to count the number of sets (cj)jej such

that Eq. (8) holds. If we substitute the formula given in

Eq. (7) into Eq. (8), we find that (cj)jej defines a word in

the TSRS code Cff if and only if

( o cj,) 01h=0,1, ..., #-1

x• {1,a, ..., a "-1}
(18)

Now, for h = 0, 1, ..., p - 1, we define the polynomial

Ph(x) as

Ph(x)= Z
jEJ

Thus Eq. (18) holds if and only if TrF(Ph(x)) = 0 for

alia • {1,a, ..., a n-1},for allh =0,1, ..., p-1. By

Lemma 1, this will be true if and only if_h,j = 0 for all h =

0, 1, ..., p- 1 and all j • J, where Ph,j is the coefficient

of xJ in the polynomial 7)h(X) = Tr_(Ph(x)) rood (x '_ - 1)

(Eq. (12)).

Now by Lemma 2, if d = deg(j), the coefficient "Ph,j is

given by the formula

(19)

where in Eq. (19), Jj = rj Cl J.

In summary, a set (cj)jej of elements from GF(2 m)

corresponds to a codeword in C_ if and only if _Dh,j, as

defined in Eq. (19), is zero, for all h = 0, 1, ..., p- 1 and

all j • J. However, by the Corollary to Lemma 2, conju-

gate j's correspond to conjugate _)h,j 'S, and so if Ph,j = 0
for one element j of a given cyelotomic coset, it will be
zero for all other elements of the coset as well. Thus in

"solving" the equations "Ph,j = 0, it is sufficient to restrict

j to lie in the set In, consisting of the least element of each

cyclotomic coset. Thus if we want to count the number of

sets (cj)jes corresponding to codewords in the TSRS code

C_, we get one set. of equations of the form _Oh,j = 0 for
h = 0, l, ..., /t- 1 for each modulo n cyclotomic coset,

i.e., each j • In.

To simplify the notation, for each 9 • Jj, where j • In,

we define xg = c2', where according to our convention i
is the unique index such that 2i9 rood n = j. Note that

since the mapping _ --_ _2' is one to one, the cg's can be

uniquely recovered from the xg's. For the remainder of the

proof, we shall focus on the problem of determining when

a set (xg)gej corresponds to a codeword in C_. By the
foregoing discussion and Eq. (19), this will be true if and

only if

/_ \
Tr_ _._xgah2'; :0 forh=0,1, ..., p-1

\z=_J i

(20)

for all j • I_. Since a set of equations of the form of

Eq. (20) involves only those variables xg corresponding to

g's in a fixed cyclotomic coset, it follows that if the number
of solutions to Eq. (20) is denoted by Nj, then the total

number of codewords in the code Cu is simply I-Ijei, Nj.
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Let F be one of the cyclotomic cosets modulo n, with

IFI = d, and let E be a subset of F, with IEI = e. Let

(xa)aeE be e variables taking values in the field GF(2m),
which satisfy the p simultaneous linear equations

We will show that the rank of the mapping T is min(ef, it),
so that the nullity ofT is (e f-it)+, and this will complete

the proof. We will consider the cases ef > it and ef < it
separately.

for h-0,1 .... , it-1 (21)

Case 1: ef >/1. We need to show that rank(T) = it.
This is equivalent to showing that there is no set of nonzero

(Ah)'s such that

Theorem 3. The set of solutions (Xg)gEE to Eq. (21) is
a vector space over GF(2d), of dimension (e f-it)+, where
f = mid. The number of solutions is therefore 2d(eJ-u)+.

Theorem 3, combined with the previous discussion,

completes the proof of Theorem 2, since it implies that,

for each j E I,_, the number of solutions to Eq. (20)

is 2d,(eJh-u)+, where fj = m/dj, which is the same as
2 (m_'-"aJ)+, as asserted in Theorem 2.

Proof of Theorem 3: The fact that the set of so-

lutions to Eq. (21) is a vector space over GF(2 d) follows

from the fact that Tr_ n is a linear mapping from GF(2 m)

to GF(2a), i.e, that if x and x' are elements of GF(2m),

and if A and A' are elements of GF(2d), then

Tr_(A_ + ,X'_)= AT_(_) + ,X'_7(_) (22)

Using Eq. (22), it is easy to see that if (xg) is one solution

to Eq. (21), and if (x_) is another, and if A and A' are

elements of GF(2d), then (Axe + A'x_) is also a solution to
Eq. (21). In the remainder of the proof, we will show that

the GF(2 a) dimension of the solution space to Eq. (21) is
(el - it)+.

To simplify notation, let q = 26, so that 2m = qf, and

let r = Tr_ _. If now (xg)aeE is an arbitrary vector from
GF(2m) e_ GF(qf) _, define, for h=0,1 .... , it-l,

Yh = E xg ah2' (23)
gEE

#-1

Ahzh= 0 (25)
h=O

for all vectors (xa) in GF(ql) e. If Eq. (25) is true, then
from Eq. (24), we have

(26)

for all (xe)'s. The inner sum in Eq. (26) is, by Eq. (23),

#-1 /_-I

h=0 h=0 gEE

it-1

gEE h=0

It follows then that

p-1
for all (xg), where fie = )-_h=O " _h2'Ahcx . But it is easy to see

that this can hold if and only if/3 a = 0 for all g E E. In

summary, then, Eq. (25) will be true for all (xg)'s if and
only if

and

zh = r(yh) (24)

t*-i

E AhahT = 0 for all g C E (27)
h=0

Now let T be the GF(q)-linear mapping from GF(q]) _ =
GF(q) _I to GF(q)., defined by

T:(xg)geE--(Zh)h:0 ..... .-t

Next, define the polynomial L(x) as

it-1

L(_) = _ _h_h
h=O
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Then Eq. (27) says L(a _') = 0 for all g E E, so that L(x)

has IE[ = e distinct roots in the set {a,a", ..., a 2_-1}.

However, since the coefficients of g(x) are in GF(q), then

every GF(q) conjugate of a root of L(x) is also a root.

But conjugation with respect to GF(q) is the mapping

/3 --+ flq = fl 2_. But since a is a primitive root, each

element of GF(2 m) = GF(2 _s) of the form a -_' with 0 _<

i _< d- 1 has exactly f GF(2 d) conjugates, viz, c__k for

k = i,i + d,...,i + d(f - 1). Hence by taking conjugates

of the original e roots of L(x), we obtain ef roots. But

since ef > # by assumption, and since deg L(x) <_ # - 1,

it follows that the coefficients of L(x), i.e, the Ah'S, are

all zero. This means that no nontrivial relationship of the

form of Eq. (25) can hold, which completes the proof in
Case 1.

Case 2: ef < t2. In this case we need to show that

rank(T) = ef. But clearly rank(T) < e f, since the GF(q)-

dimension of the space of all (xg)'s is el. However, by the

argument in Case 1, the first ef components of (zn) are

linearly independent, and so rank(T) > ef as well. Hence

rank(T) = e f, as asserted.

IV. Summary and Conclusions

In this article, we have introduced an extensive class of

symbol-oriented error-correcting codes, which have prop-
erties much like those of Reed-Solomon codes, without,

however, suffering from the major drawback of RS codes,

viz, an intrinsic limitation on codeword length. As sub-

codes of RS codes, these codes can be decoded by any RS

decoding algorithm. However, the study of these codes is

in its infancy, and we therefore close with a list of unsolved

problems related to TSRS codes.

(1) Our selection of the representation of an element

from GF(2 "_) as a binary m-tuple was more or less
arbitrary. If another representation is used, will a

code of larger dimension result?

(2) Devise an efficient encoding algorithm for an arbi-
trary TSRS code, or at least a large class of them.

(3) Determine the conditions under which TSRS codes

are systematic over the symbol alphabet V(2m-u).

(A necessary condition for this to be so is that the

pseudodimension k u be an integer. But in [4], it was

shown by example that this condition is not suffi-

cient.)

(4) Study the combinatorial optimality of TSRS codes.

For example, devise bounds on the cardinality of a

(n, k, d) code over a q-letter alphabet when q is a

fixed fraction of n, say An, as n _ oc.

(5) Investigate the relationship between TSRS codes

and generalized BCH codes, i.e., BCH codes whose

symbol field is GF(2 d) and whose locator field is

GF(2m), where d is a divisor of m.

(6) Compare the distance properties of TSRS codes to

algebraic geometry codes with approximately the

same values of n k, and q.

(7) Do TSRS codes meet (or exceed) the Gilbert-
Varshamov bound?
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